
Page 1 ©2015 CPI, Inc.

WHERE’S THE FIRE?
Java Security Fears Are More “Smoke and Mirrors” Than Five-Alarm Fire

In fact, the government agency tasked with monitoring technological security vulnerabilities ranks

Java as more secure than dozens of other technologies and products. This paper will explore the

disconnect between inflammatory rhetoric and data-backed reality.

Java security is a disaster, if the headlines are

to be believed. No other technology poses such

an egregious risk, they tell us. The only

solution, many pundits and proponents of

other technologies insist, is the nuclear option:

completely uninstall Java from your computers,

servers and networks.

Is Java truly such an abysmal security failure, as

portrayed by the press and non-Java software

companies? No, but the point of this paper is

not to prove that it's totally secure. Yes, Java

has security vulnerabilities. So does everything

else. No technology platform or product is

totally secure; and the surprising reality is that,

in the spectrum of security risk, Java does not

fall anywhere close to where you think it does.

In fact, as we’ll explore shortly, out of the top

30 most vulnerable tech products, Java falls

around #25.

"But everyone says it's insecure!" you protest.
Welcome to FUD: fear, uncertainty and doubt.

FUD is not a realistic portrayal of the state of
Java security; it's a propagandistic tactic meant
to influence public perception with the
overwhelming presentation of negative,
dubious or outright inaccurate information.
FUD is also known as “fear-mongering,” and
you may recognize it from other areas of life,
like politics.

But fear not: in this paper, we are going to ask
and answer three very specific, pertinent
questions whose answers are then drawn from
reputable, independent sources.

1. Does Java face more security
vulnerabilities than other technologies?

2. Are Java security vulnerabilities more
severe?

3. Does Java face more high-severity
vulnerabilities specifically than other
technologies?

The answer to all three questions is no, but it's
no better to take that answer at face value than
to accept the FUD without question. Instead,
let’s do a deep dive into government-sourced
and backed data analysis for an answer that
cuts through the smoke.

Page 2 ©2015 CPI, Inc.

Java Is Not (Necessarily) What You Think

To start, let’s point out an important caveat: not
everyone means the same thing when they say
"Java." As a class of technologies, Java has been
hugely successful – Java Virtual Machine, for
example, runs on an estimated 89% of computers, 3
billion mobile phones and 125 million TV devices.i

In fact, part of Java's reputation for insecurity is due
to its ubiquity; if it has had higher numbers than
other technologies, it also has more developers and
end-users, making it a more attractive target for
malicious agents and bad actors, a fact that has no
bearing on its intrinsic security relative to other
platforms. As the SANS Institute for computer
security training says:

"The risks arise because [Java and .NET] are the
[languages] commonly used to build big, feature-
rich, business-critical applications with a lot of
valuable code, especially legacy code written by
developers who didn't understand secure
development – code that is exposed to attack."ii

It’s analogous to the security of Mac OS X or Linux
versus Windows: the latter gets targeted much more
frequently due to its massively disproportionate
market penetration. For Java, developers embraced
its "write once, run anywhere" principle, and the
result is a similarly enormous market penetration.
According to a Stack Overflow survey, JavaScript is
the most commonly used programming language in
2015 (54.5%), with Java in the third spot at 37.4%.iii

But that statement illustrates our point that not
everyone means the same thing by "Java." JavaScript
and Java are not the same thing; and Java itself has
multiple versions, iterations, forms, and platforms.
And not all of them bear the same security flaws.

And if you're running an outdated version of Java
(i.e., Sun rather than Oracle), you are risking your
security. But does modern Java, for those following
best practices, pose the ponderous risks claimed?

Be prepared to be surprised.

Java’s Security Improvements Are Outpacing Public Perception

Additionally, even if Java did deserve its reputation in
full, improvements to its security have been fast
outpacing public perception.

According to Cisco's 2015 Annual Security Report,
Java exploits declined 34% in 2014, with 54 urgent
Java vulnerabilities in 2013 versus only 19 in 2014, as
a result of security improvements.iv

These improvements are partially because Oracle
(which has owned Java since 2010) has dramatically
improved its patching response speed. "Java Virtual
Machine (JVM) is continually being updated,"
according to Martin Roesch, chief architect of the
security business group at Cisco. "I suspect that many
Java attacks are against the JVM, and the JVM is just
getting better with better security."v

Those findings track with the experience of end-
users. Eighty percent of respondents to a 2014
survey of IT professionals believe Java apps to be
“very” or at least “somewhat” secure, with fully one-
third (33%) deeming it “very” secure (see chart).vi

0%

10%

20%

30%

40%

50%

Not Very
Secure

Somewhat
Secure

Very Secure

Percentage Believing Their
Java Apps Are:

(Source: Waratek)

http://www.cisco.com/web/offers/lp/2015-annual-security-report/index.html

Page 3 ©2015 CPI, Inc.

In fact, the Cisco report actually called out Adobe
Flash, PDF Reader and web browsers like Microsoft's
Internet Explorer as having the most application
vulnerabilities and exploits. That has serious
implications for services delivered via web browsers,
particularly in sensitive environments dealing in

private information, like health care, financial and
government offices.

That brings us to our first major question: does Java
face more security vulnerabilities than other
technologies?

Question #1: How Many Total Vulnerabilities Affect Java?

For our data, we're going to turn toward the MITRE
Corporation, a not-for-profit organization that's
partially funded by the National Cyber Security
Division of the U.S. Department of Homeland
Security and established back in 1985. MITRE
manages the federally-funded research and
development centers that support the DHS, DOD,
FAA, IRS, VA and others. Interestingly, mitre.org was
the first ".org" domain name ever registered.

MITRE created a system – the Common
Vulnerabilities and Exposures (CVE) system – to track
and categorize publicly known information-security
vulnerabilities and exposures. MITRE reports,
validates, documents, and then makes these issues
public, publishing the CVE List Master Copy on a
monthly basis at cve.mitre.org.

Why MITRE? They are a fact-driven, dispassionate
source of information. "MITRE is chartered to work in
the public interest. We have no commercial
interests."vii They cut through the FUD to pull out the
truth which means, for example, they don't cherry-
pick particular months or data sets to prove their
case.

Why the CVE? It's clear, factual, and easy-to-use. It
takes the top 50 technology products and platforms
and ranks them by number of certified
vulnerabilities, with the highest number of
vulnerabilities ranked at #1 (in other words, higher is
worse).

When we look at a recent data set (see Figure 1viii,
next page), we observe that no form of Java – not a
single iteration – falls in the Top 10. Web browsers
and operating systems, even Mac OS X and iOS, have
more certified vulnerabilities than Java.

Again, that has security implications for zero
footprint clients and non-Java software that passes
data through the web browser: since platforms like
Chrome, Internet Explorer and Firefox all lead the
pack in vulnerabilities, any browser-based software
solution risks those additional vectors of attack, on
top of any inherent vulnerabilities.

Other than outdated versions of Java, Java doesn't
make its first appearance until spot 25, where we
finally find Java Runtime Environment (JRE, installed
on end-user devices in order to run Java apps) and
Java Development Kit (JDK, which developers use to
write Java applications but is not installed on end-
user devices). However, those two iterations use the
same code base, so they share the same
vulnerabilities; that's why they appear right next to
each other.

So that explains our point that Java faces notably
fewer vulnerabilities than many universal platforms,
browsers and OSes. But there's still a fair question to
ask: even if Java has fewer vulnerabilities than many
other technologies, are its vulnerabilities more
severe?

Page 4 ©2015 CPI, Inc.

Question #2: How Severe Are The Vulnerabilities?

To answer this question, we're going to turn to a
different information source. First, we need to
classify the severity of a vulnerability. To do that, we
need to use a standardized system: CVSS, the
Common Vulnerability Scoring System. The
Department of Homeland Security National Cyber
Security Division maintains a National Vulnerability
Database and uses CVSS as the primary method of
quantifying the severity of vulnerabilities on a scale
of 0 to 10 (see Figure 3).

Oracle Java Runtime has a weighted average of 7.7,
so it does fall in the high category. But the question
we're investigating: are Java vulnerabilities more
severe than others, on average? No: once again, Java
doesn't appear until the Top 30 (see Figure 2), while
browsers (and the zero footprint clients that use
them) pose risks of much greater severity.

So not only does Java have fewer total vulnerabilities
(the first question), neither are those vulnerabilities
as severe as the others'. But could it be that Java
faces more high-severity vulnerabilities specifically?

In other words, if we look solely at the high-severity
problems and compare just those, does Java
suddenly deserves its reputation? We'll look at that
question next.

Figure 1. Total Number of Vulnerabilities Figure 2. Average Severity of Vulnerabilities
Rank Product Vendor Vulnerabilities Rank Product Vendor Weighted Avg.

1 Linux Kernel Linux 1289 1 Internet Explorer Microsoft 9.4

2 Firefox Mozilla 1187 2 Acrobat Adobe 9.4

3 Chrome Google 1095 3 Office Microsoft 9.4

4 Mac Os X Apple 1081 4 Flash Player Adobe 9.3

5 Windows Xp Microsoft 728 5 Acrobat Reader Adobe 9.2

6 Seamonkey Mozilla 695 6 Quicktime Apple 8.6

7 Thunderbird Mozilla 676 7 Firefox Esr Mozilla 8.4

8 IE Microsoft 632 8 Itunes Apple 8.4

9 Mac Os X Server Apple 626 9 Windows Server 2003 Microsoft 8.2

10 Safari Apple 565 10 Thunderbird Mozilla 8.1

11 Internet Explorer Microsoft 548 11 Windows Vista Microsoft 8.1

12 Windows Server 2008 Microsoft 543 12 Webkit Apple 8.1

13 Windows Vista Microsoft 538 13 Seamonkey Mozilla 8

14 Solaris SUN 533 14 Windows Server 2008 Microsoft 8

15 Windows 2000 Microsoft 508 15 Windows Xp Microsoft 7.9

16 Iphone Os Apple 495 16 Windows 2003 Server Microsoft 7.9

17 Flash Player Adobe 459 17 Windows 7 Microsoft 7.9

18 JRE SUN 435 18 JRE SUN 7.8

19 Windows 2003 Server Microsoft 429 19 JDK SUN 7.8

20 Windows 7 Microsoft 416 20 Firefox Mozilla 7.6

21 Windows Server 2003 Microsoft 408 21 Windows 2000 Microsoft 7.6

22 JDK SUN 405 22 JRE Oracle 7.6

23 PHP PHP 399 23 JDK Oracle 7.6

24 Database Server Oracle 390 24 Chrome Google 7.5

25 JRE Oracle 389 25 Safari Apple 7.5

26 Acrobat Reader Adobe 389 26 IOS Cisco 7.3

27 JDK Oracle 378 27 AIX IBM 7.3

28 Acrobat Adobe 373 28 IE Microsoft 7.2

29 IOS Cisco 372 29 Database Server Oracle 7.1

30 AIX IBM 321 30 Hp-ux HP 6.9

Figure 3. CVSS Weighted Average for
Vulnerabilities

Score Severity

0.0 – 3.9 Low

4.0 – 6.9 Medium

7.0 – 10.0 High

Page 5 ©2015 CPI, Inc.

Question #3: How Many Severe Vulnerabilities Affect Java?

Figure 4. Summary of CVE and CVSS

Appraisal of Java Security Vulnerabilities

Analysis Rank

Total # of Vulnerabilities 25th

Average Severity 22nd

Total High Severity 27th

Total Medium and High 27th

To answer this question, we're going to examine the
total number of vulnerabilities with a "high" severity
score (between 7.0 and 10.0 according to the CVSS).
We'll be brief: once again, JRE and JDK don't appear
until the Top 30 (with 177 such high-severity
vulnerabilities), well behind browsers and operating
systems that pose greater security risks than Java.

In fact, the #1 spot is occupied – surprisingly – by
Chrome, with three times the number of high-
severity vulnerabilities as Java. Funny how no articles
cry, "Chrome is the biggest vulnerability for U.S.
computers."1

Why So Much Smoke,

If So Little Fire?

Yes, we should absolutely be concerned with Java
vulnerabilities. We should be concerned with
vulnerabilities on all platforms. But we also need to
understand that not all Java is equal, and
inflammatory rhetoric around its security flaws is
unhelpful – it's just FUD – without realistically
understanding Java’s various risk profiles.

Any given system or network will be vulnerable to
many different vectors of attack. Java is simply one of
many, and it is neither the worst nor the weakest.

Proper risk management that uses industry
standards and information published by federal
authorities to cut through the smoke will be able to
accurately, effectively prioritize the most pressing
vulnerabilities.

Those organizations will then be able to create
policies and make software choices that effectively
mitigate the real problems, rather than the trumped
up ones.

The Java Browser Plug-In: A Closer Look

The vast majority of the identified vulnerabilities
relate to the Java plug-in for web browsers. When
the user browses a web site that is malicious or
compromised, such content is able to leverage Java
vulnerabilities in the browser through the plug-in.

But Java is much more than just a browser plug-in.
Full-blown Java applications (i.e., not zero footprint
clients), running locally, accessible and usable
without the browser, are much safer. It's the applets,
as security vendor Sophos describes them, "which
are delivered into your browser as you use the
internet [that's] where the risk from Java presents
itself." Specifically, the browser-based Java runs a
deliberately restricted version of the Java
environment, but those restrictions don't "always
impose the limitations it should, due to software
vulnerabilities in Java." xi

In other words, if we were to apply the same
comparison test we just did for Java against other
technologies, and did it just for specific iterations of
Java, the browser plug-in would be at the top of the
list. Full-blown Java would be at or near the bottom.

1 See CSO Online’s “Java is the Biggest Vulnerability for U.S. Computers.” The title is provocative, but clarifications inside the main
text indicate that it’s outdated instances of Java that are posing the risk. People who keep their Java up-to-date are actually in a
strong position, security-wise.

http://www.csoonline.com/article/2875535/application-security/java-is-the-biggest-vulnerability-for-us-computers.html

Page 6 ©2015 CPI, Inc.

Seven Best Practices For CIOs Setting Java Security Policy

Put Java in perspective. More than anything else, strive for a realistic understanding of Java’s strengths

and weaknesses. Any single computer offers many security vulnerabilities, and therefore many vectors

of attack. Proper risk management uses industry standards and information published by federal

authorities to prioritize the most pressing vulnerabilities.

Organizations can then create policies that effectively mitigate

the real problems, rather than the inflated ones.

Apply security standards to all platforms. Java security
should still be taken seriously, of course; and that
means turning your Java security up as high you can

(Figure 5). We recommend setting the slider at "very high,"
which allows only trusted applications to run (see the next best
practice for an explanation of what that means).

Only use trusted, signed apps from trusted sites.
Trusted, signed apps reduce risk by ensuring the applications have not been altered since the official
release. Also, only install updates made available through official channels.

Update regularly. According to StatOwl.com, at least 47% of Java users are still running Java 6; due to
tracking limits, the number could actually be higher. That means half or more of Java users are using
an outdated version of Java that does not provide the same security protections as the most recent.ix

Those users who keep Java up-to-date face far, far fewer problems. "There are still old Java exploits floating
around, but the Java Virtual Machine (JVM) is continually being updated," Martin Roesch, chief architect of the
security business group at Cisco, told eWEEK.x

Provide security awareness training. Security is not just a tech problem, it’s a people problem, and users
need to understand how to use software properly and safely. Similarly, IT technicians need to know
how to properly update and maintain software, or at least know whom to contact for assistance.

Do not use the Java plug-in if you can avoid it. Remember, Java applications and Java applets are two

separate things and carry two separate risk profiles. It may not be possible to disable the plug-in

entirely, for a variety of reasons, but you can minimize its usage; also choose fully-fledged Java clients

over zero footprint. Power tip: disable the Java plug-in on your primary browser and use it when needed only a

secondary browser, which you use to access only trusted websites, or use it only in a virtualized environment.

That approach doesn't provide perfect security – it doesn't protect against watering-hole attacks, for example –

but it minimizes the risk landscape.

Learn to discern good information from bad. Headlines often fail to tell the whole story. Learn to look
for clarifications, like which kinds of Java are being referenced (browser plug-in? outdated installations?
zero footprint clients versus applications?). Identify speculation, assumptions and over-generalizations.

Business environments are very different from personal computing, for example; and studies that examine
private use of Java are unlikely to apply to corporate or government usage.

Figure 5. Java Security Settings

Page 7 ©2015 CPI, Inc.

Where OpenFox® Fits: Our Risk Profile

We've been making the point that the risk profiles of different iterations of Java vary
enormously, from the higher risk of the browser plug-ins to the much better than
expected security of modern, up-to-date JRE and JVM installations.

Since OpenFox® is a Java application, it logically follows to ask: where does its security
profile fit into our discussion?

OpenFox® is a real client.

You undoubtedly noted that the most popular web browsers appear above in the Top
10 lists of vulnerabilities over and over again; and we've already talked about the
vulnerabilities of the Java browser plug-in. OpenFox® bypasses all of that entirely. CPI
does not pass CJIS data through a browser. Instead, the web browser is used to
download the application initially, but OpenFox® itself is a full-fledged, self-contained
application running locally on your machine. It does not run within a browser, nor
does it require your users to use the Java plug-in, or even for it to be enabled.

OpenFox® Messenger is a “Trusted Application.”

This falls in line with one of our Best Practice recommendations. The program was
published by CPI and has gone untouched by anyone else; no unverified third-party
code is incorporated into the program. It has not been altered in any way since it was
published by CPI's controlled release process. Further, the certificate is issued by
industry giants Symantec/Verisign.

OpenFox® has been built with security in mind.

What we've learned over the course of this paper is that (1) Java has fewer security
vulnerabilities than dozens of other commonly used technologies; (2) Java security
vulnerabilities are no worse than others, and are less severe than dozens of others;
and (3) Java has fewer high-severity security vulnerabilities (those scoring 7.0+ on the
CVSS scale) than dozens of others. Since OpenFox® is built on the Java platform, all of
those statements are true of OpenFox® as well.

Altogether, OpenFox® has been specifically engineered to minimize its already low
risk profile. That's why it's designed as a full fledged application (not as a zero
footprint browser client), why we don't require the use of the browser plug-in to use
it, and why we take such care in certifying the software.

Page 8 ©2015 CPI, Inc.

Computer Projects of Illinois, Inc. (CPI), with its
headquarters in Bolingbrook, Illinois, is a
privately held corporation and an
acknowledged leader in information-sharing
software systems for the law enforcement and
criminal justice community.

CPI's sole focus has been, and will continue to
be, this sector. CPI expends all of our energies
on the development, installation and
maintenance of our software products. CPI
systems are state-of-the-art and cost-effective;
ensuring that our customers get the most for
their investment.

Computer Projects of Illinois, Inc.
475 Quadrangle Drive, Suite A

Bolingbrook, IL 60440

Tel: (630) 754-8820
Fax: (630) 754-8835

Help Desk: 866-471-6305

www.openfox.com

The "OpenFox" Company

References

i Java. “Learn About Java Technology.” Retrieved June 2015 from https://www.java.com/en/about/.
ii Bird, J., Johnson, E. & Kim, F. (2015 May). “2015 State of Application Security: Closing the Gap.” SANS Institute InfoSec Reading
Room. Retrieved June 2015 from https://www.sans.org/reading-room/whitepapers/analyst/2015-state-application-security-
closing-gap-35942.
iii Avram, A. (2015, Apr 9). “Stack Overflow Survey 2015: Technologies Used, Loved, Disliked or Wanted.” InfoQ. Retrieved June
2015 from http://www.infoq.com/news/2015/04/stack-overflow-survey-2015.
iv Cisco. “Cisco 2015 Annual Security Report.” Retrieved June 2015 from http://www.cisco.com/web/offers/lp/2015-annual-
security-report/index.html.
v Schwartz, M. (2013, Mar 8). “9 Must-Know Java Security Facts.” InformationWeek. Retrieved June 2015 from
http://www.informationweek.com/security/application-security/9-must-know-java-security-facts/240150346.
vi Barker, I. (2014, Oct). “Professionals believe their Java apps are secure despite relying on third-party code.” BetaNews.
Retrieved June 2015 from http://betanews.com/2014/10/08/professionals-believe-their-java-apps-are-secure-despite-relying-
on-third-party-code/.
vii MITRE. “Corporate Overview.” Retrieved June 2015 from http://www.mitre.org/about/corporate-overview.
viii MITRE. “Common Vulnerabilities and Exposures.” Retrieved May 2015 from https://cve.mitre.org/.
ix Schwartz, M. (2013, Mar 8). “9 Must-Know Java Security Facts.” InformationWeek. Retrieved June 2015 from
http://www.informationweek.com/security/application-security/9-must-know-java-security-facts/240150346
x Kerner, S. (2015, Jan 20). “Java no longer such a big risk, Cisco security report finds.” eWeek. Retrieved June 2015 from
http://www.eweek.com/security/java-no-longer-such-a-big-risk-cisco-security-report-finds.html.
xi Ducklin, P. (2014, Apr 16). “No Hearbleed holes in Java, but here comes a sea of patches anyway.” Sophos Naked Security.
Retrieved June 2015 from https://nakedsecurity.sophos.com/2014/04/16/no-heartbleed-holes-in-java-but-here-comes-a-sea-of-
patches-anyway/

https://www.java.com/en/about/
https://www.sans.org/reading-room/whitepapers/analyst/2015-state-application-security-closing-gap-35942
https://www.sans.org/reading-room/whitepapers/analyst/2015-state-application-security-closing-gap-35942
http://www.infoq.com/news/2015/04/stack-overflow-survey-2015
http://www.cisco.com/web/offers/lp/2015-annual-security-report/index.html
http://www.cisco.com/web/offers/lp/2015-annual-security-report/index.html
http://www.informationweek.com/security/application-security/9-must-know-java-security-facts/240150346
http://betanews.com/2014/10/08/professionals-believe-their-java-apps-are-secure-despite-relying-on-third-party-code/
http://betanews.com/2014/10/08/professionals-believe-their-java-apps-are-secure-despite-relying-on-third-party-code/
http://www.mitre.org/about/corporate-overview
https://cve.mitre.org/
http://www.informationweek.com/security/application-security/9-must-know-java-security-facts/240150346
http://www.eweek.com/security/java-no-longer-such-a-big-risk-cisco-security-report-finds.html
https://nakedsecurity.sophos.com/2014/04/16/no-heartbleed-holes-in-java-but-here-comes-a-sea-of-patches-anyway/
https://nakedsecurity.sophos.com/2014/04/16/no-heartbleed-holes-in-java-but-here-comes-a-sea-of-patches-anyway/

